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We present a study of the effect of decoupled azimuthal and zenithal weak anchoring on the transition
between C1 and C2 chevron structures in smectic-C liquid crystals. We consider temperatures below the
SmA-SmC transition and assume that the value of the smectic cone angle can be regarded as constant through
the cell. By standard Euler-Lagrange minimization of the total energy we obtain a simple analytical expression
for the equilibrium director twist angle in the C1 and C2 chevron states. Using this analytical form, we are able
to compare the total energies of the C1 and C2 chevrons, and determine the globally stable chevron profile. We
show that the C2 state is preferred when the azimuthal anchoring strength is relatively large, while C1
chevrons will dominate for strong zenithal anchoring.
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I. INTRODUCTION

Layered chevron structures can appear when a confined
sample of smectic-A liquid crystal is cooled into the tilted
smectic-C phase. In a constrained system where layer conti-
nuity is conserved, the molecular tilting associated with this
change of phase, and the corresponding layer thickness con-
traction, can lead to layer buckling. When this type of buck-
ling occurs the smectic layers can orientate in one of two
directions, leading to what are known as C1 or C2 chevrons.
As a result of this degeneracy in the layer direction, the
liquid crystal can organize into domains of different chevron
states. However, the interfaces between these domains form
“zigzag” defects �1,2�, which can have a detrimental effect
on the quality of liquid crystal displays.

In order to exploit the display possibilities of surface sta-
bilized ferroelectric liquid crystals �SSFLCs�, it is vital to
have an understanding of and some control over the self-
organization of confined smectic layers. One way of break-
ing the smectic layer degeneracy, thereby predisposing the
system toward one of the C1 or C2 states, is to treat the
bounding substrates so that a specified director angle �a
“pretilt”� is induced at the surfaces. Introducing this type of
tilt anchoring can lead to the removal of defects and a ho-
mogeneous device with better optical characteristics.

A number of theoretical models have been proposed for
smectic chevron structures. Clark and Rieker �2� presented
the first theoretical description, modeling chevrons in terms
of a discontinuity in layer tilt while maintaining a continuous
director structure at the chevron interface. Nakagawa �3,4�,
Mukai and Nakagawa �5�, and Anderson �6� considered com-
pressible �variable thickness� smectics, while de Meyere et
al. �7� adopted a similar approach that assumed the molecule
tilt was related to the layer tilt. Limat and Prost �8� examined
the transition between the smectic-A bookshelf structure and
the smectic-C chevron, while Limat �9� extended Nakaga-
wa’s model �4� to allow for unequal cone and layer tilt
angles. Mottram et al. �10� assumed that the layer and mol-
ecule tilts were related in their study of biaxiality in the
smectic-C phase. Phenomenological Landau–de Gennes free
energy functionals similar to �10� were also employed in
studies of smectics by Vaupotič et al. �11�, Beldon et al. �12�,
and Shalaginov et al. �13,14�.

The present authors have previously examined the transi-
tion between C1 and C2 chevron profiles close to the
SmA–SmC transition and, by adopting a simplified elastic
energy density and a low-order thermodynamic Landau ex-
pansion, were able to derive, analytically, phase diagrams
demarcating the C1 and C2 regimes for variable temperature,
pretilt, and anchoring strength. It was found that the C2 state
is preferred when the pretilt angle is decreased and/or the
anchoring strength is weakened. This behavior was con-
firmed by Diaz et al. �15,16� via a numerical model of the
weak pretilt anchoring.

However, the results of �15,16� appear to contradict a re-
lated analysis by Wang et al. �17�, who found that, for their
choice of surface energy, C1 chevrons are preferred at weak
anchoring strengths. Upon closer inspection it is clear that
the surface energy adopted in Wang et al. �17� is a measure
of only the azimuthal variation from the preferred director
position at the substrate. The apparent contradiction may be
due to the models of Wang et al. and Diaz et al. considering
only restricted versions of the surface anchoring energy.

In an attempt to isolate the mechanisms that determine the
existence of C1 or C2 chevrons, in this article we examine
the effect of decoupled azimuthal and zenithal surface ener-
gies. Unlike previous studies �15,16�, we consider chevrons
at a temperature below the SmA–SmC transition where the
cone angle and chevron tilt angle are assumed to be fixed.
We could introduce variations in the cone angle via a ther-
modynamic Landau expansion similar to �15,16� but our aim
here is to concentrate on the influence of azimuthal and ze-
nithal anchoring and this energy term is omitted. From ge-
ometry considerations, we will show that the surface energy
adopted in Diaz et al. �15,16� can be thought of as a special
case of a general energy form in which the individual azimu-
thal and zenithal anchoring strength coefficients are equal.

By standard Euler-Lagrange minimization of the total en-
ergy, we obtain a simple analytical expression for the equi-
librium director twist angle in the C1 and C2 chevron states.
This in turn allows us to compare the total energies of the C1
and C2 chevrons and determine the globally stable chevron
profile. We examine the equilibrium director profiles and
chevron structures that minimize the energy as the azimuthal
and zenithal anchoring strength coefficients are allowed to
vary independently.

PHYSICAL REVIEW E 76, 041705 �2007�

1539-3755/2007/76�4�/041705�8� ©2007 The American Physical Society041705-1

http://dx.doi.org/10.1103/PhysRevE.76.041705


II. GEOMETRY OF THE CELL

We examine a smectic-C liquid crystal sample con-
strained by two parallel substrates a distance 2d apart �see
Fig. 1�a��. The z axis corresponds to the direction perpen-
dicular to the substrates, the x axis coincides with the rub-
bing direction on the substrates, while the y axis completes
the orthogonal coordinate system. We consider symmetric
substrate treatments �often called parallel rubbing�; there-
fore, we model the lower half of the cell, from z=0 to z=d,
and assume that the upper half is equivalent due to symme-
try. Nonsymmetric configurations may exist �18�; however,
they will be energetically unfavorable.

The smectic-C phase can be described as a layered struc-
ture where the unit director n makes an angle � ��0�, the
cone angle, with respect to the layer normal. The director is
then constrained to lie on the surface of a fictitious cone,
with vertex angle 2�; see Figs. 1�b� and 1�c�. The position of
n on this smectic-C cone can be represented via an azimuthal
angle �, while the layer tilt angle � denotes the tilt of the
layers from the substrate normal. The cone angle is depen-
dent on temperature �19� and, although influences such as an
applied electric field or surface treatments may alter the cone
angle from the thermotropic equilibrium, we will assume that
the cone angle is constant through the cell. Furthermore, in
this model we will also assume an empirically derived rela-
tionship between the layer tilt, which is largely determined
by the steric packing of molecules in layers, and the cone
angle, defined by the local optic axis which is determined by
the orientation of the molecular core. This relationship be-
tween the layer tilt and cone angle will be taken as �
= ±��, where �=0.85 is a typical experimentally deter-
mined value �20,21�. The C1 and C2 chevrons are then char-
acterized by, respectively, a positive or negative layer tilt
angle � in the lower half of the cell; see Fig. 1�a�. Assuming
that the twist angle, ��z�, depends on only the z coordinate,
we can write the director n as

n = �cos � cos � + sin � sin � cos ��z�,

− sin � sin ��z�, cos � sin � − sin � cos � cos ��z�� .

�1�

At both the substrate and the chevron interface the director
will be restricted by certain constraints. At the chevron inter-
face the two arms of the chevron, tilted in opposite direc-
tions, meet and, since the director is restricted to lie on the
smectic cone, there is a geometric constraint which forces the
director to lie in the xy plane, as discussed in a later section.

At the substrate an anchoring treatment is applied and tends
to align the director in a certain direction, as discussed in the
next section.

III. SURFACE ANCHORING

A number of factors can influence the anchoring of liquid
crystal molecules at a substrate, such as steric and dipole-
dipole interactions between molecules and the polymer
alignment layer. The macroscopic anchoring energy is a rep-
resentation of these effects which is used, together with bulk
energy terms, to calculate the total energy of the system. This
total energy will then be minimized to find the equilibrium
director configuration�s� for the liquid crystal.

A commonly used anchoring energy is the Rapini-
Papoular energy term,

Wsurf =
1

2
�0�1 − �n · n0�2� , �2�

which exhibits a minimum at n=n0, when the director aligns
with a specific preferred surface orientation, n0. In Eq. �2�, �0
is the anchoring strength and, assuming that the alignment
rubbing is in the x direction, the preferred orientation

n0 = �cos �0, 0, sin �0� �3�

is written in terms of a pretilt angle �0. If we define � �as
shown in Fig. 2� to be the angle between n and n0 then, using
Eqs. �1� and �3�,

cos � = n · n0 = cos � cos�� − �0� + sin � cos � sin�� − �0�
�4�

and Eq. �2� may be rewritten as

Wsurf =
1

2
�0 sin2 � , �5�

which is clearly minimized when �=0.
However, it is often possible to associate molecular an-

choring effects with an anchoring of the director in either the
zenithal or azimuthal directions. For instance, steric interac-
tions between liquid crystal molecules and the polymer
alignment material may be more important as the director
rotates about the axis in the xz plane which is perpendicular
to n0, called an azimuthal rotation. Dipole-dipole interactions
between liquid crystal and polymer molecules may be domi-
nant when the director rotates within the xz plane, called a
zenithal rotation. In order to investigate the individual influ-
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(a) Layer configuration (b) C1 layer for 0 < z < d (c) C2 layer for 0 < z < d

FIG. 1. �a� Layer configuration for C1 and C2
chevron structures; �b�, �c� Description of the di-
rector in the region 0	z	d for, respectively, C1
and C2 layers, illustrating the cone angle �, azi-
muthal angle �, and layer tilt angle �.
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ences of azimuthal and zenithal anchoring, we will need to
separate the anchoring energy in Eq. �2� into azimuthal and
zenithal contributions.

We will use the standard definitions of the azimuthal and
zenithal angles between the director n and the planes con-
taining the preferred surface director n0. In order to deter-
mine these angles we introduce the pretilt plane, p0, contain-
ing n0 and perpendicular to the xz plane, with normal k0
= �−sin �0 , 0 , cos �0�; see Fig. 2. The unit vector nz is the
intersection of the pretilt plane and the plane pn, containing
both k0 and n, which has unit normal kn=k0
n / �k0
n�.
Since the intersection of two planes is equivalent to the vec-
tor product of their normals, the unit vector nz is therefore

nz =
kn 
 k0

�kn 
 k0�
= � k0 
 n

�k0 
 n�� 
 k0 �6�

=
n�k0 · k0� − k0�n · k0�

cos �z
=

n − k0 sin �z

cos �z
, �7�

where the zenithal angle �z is the tilt of the director n with
respect to p0 within the plane pn. Equation �6� uses the fact
that k0 and kn are mutually perpendicular unit vectors, while
Eq. �7� recognizes that � /2−�z is the acute angle between
the unit vectors k0 and n.

The azimuthal angle �a between n0 and nz in the plane p0
can be expressed using Eq. �7� as

cos �a = n0 · nz =
n0 · n − n0 · k0 sin �z

cos �z
=

cos �

cos �z
, �8�

since n0 ·n=0. The surface energy �5� can now be written as

Wsurf =
1

2
�0�1 − cos2 �a cos2 �z�

�
1

2
�0�sin2 �a + sin2 �z − sin2 �a sin2 �z� . �9�

The angle �z can be determined in terms of �0, �, �, and
��z� via

sin2 �z = �k0 · n�2

= �cos � sin�� − �0� − sin � cos�� − �0�cos ��2.

�10�

Similarly, using Eqs. �4� and �8� it is possible to show that

sin2 �a =
sin2 � sin2 �

1 − sin2 �z
. �11�

Our aim is to examine the preferred chevron structures when
variations in zenithal and azimuthal anchoring contribute in-
dependently to the surface energy. By considering Eq. �9�, an
obvious way to proceed is to employ the general anchoring
term,

Wsurf =
1

2
��a sin2 �a + �z sin2 �z − �az sin2 �a sin2 �z� ,

�12�

where �a and �z are the anchoring strengths of, respectively,
the azimuthal and zenithal contributions to the surface en-
ergy, and �az is a coupling coefficient. In Jérôme �22�, it is
shown that �z should vary between 10−3 and 10−7 N m−1,
while �a is between one and two orders of magnitude
smaller. A physical justification for this is presented in �22�,
although measurements made by Vilfan �23� suggest that the
azimuthal and the zenithal coefficients are of the same order.

At this point it is worth considering the possible director
configurations within the cell. At the substrate the restriction
of the director to lie on the smectic cone means that it is not
always possible to align the director with the preferred direc-
tion n0. At the bottom of Fig. 3�a� we have sketched the
director cone, viewed along the x axis, in both the C1 and C2
states together with the preferred orientation n0 at the sub-
strate. �In this paper, we assume that �0, the angle of n0 from
the x axis, is positive although negative values can be con-
sidered and will result in an equivalence when C1 and C2
states are interchanged.� It is clear that the director can be
aligned with the preferred orientation at the substrate in the
C1 case only when ��0�=� and �=�+�. For the C2 case
the director can align with the preferred direction provided
��0�=� and �=�−�. For all other values of � there is a
nonzero angle � between the director and the preferred di-
rection, so the surface energy will be nonzero. We imagine
that for small pretilt angles the preferred orientation of the
director �the orientation for which � is smallest� is expected
to be at ��0�=0 in the C1 case and at ��0�=� in the C2 case
�although the elastic energy will also be a factor in determin-
ing the energy minimum of the total free energy�. When the
pretilt angle is large enough the preferred director orienta-
tions would be expected to be ��0�=� in the C1 case and at
��0�=� in the C2 case. At the top of Fig. 3�a� we see that
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FIG. 2. �a� The director n and preferred sur-
face director n0 at the lower surface z=0. �b� The
same configuration as �a� following a rotation of
the xz plane around the y axis through the angle
�0. Preferred surface director n0 now coincides
with the x� axis direction and k0 corresponds to
the z� axis direction. Zenithal angle �z is the tilt
of director n with respect to p0 within the plane
pn, while the azimuthal angle �a is the tilt in the
plane p0.
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the geometric restriction of the director orientation at the
center of the cell �z=d� to lie in the xy plane is different in
the two chevron cases. For �=�� and �	1, ��d� will be
closer to � in the C1 case �see Eq. �17� with ����0� and
closer to 0 in the C2 case �see Eq. �17� with −�	�	0�. In
a subsequent plot we will represent the variation of �
through the cell, from ��0� to ��d�, using the diagrams
shown in Fig. 3�b� where we draw both the C1 and C2 cones
on the same diagram and trace the path of the director on
each cone as we move from the substrate to the center of the
cell.

IV. ENERGY MINIMIZATION

The system will exhibit equilibrium structures that attain
minimum states of the total free energy. We will consider a
free energy that incorporates bulk elasticity and surface an-
choring effects due to parallel rubbing. In previous analyses
of chevron structures �15,16�, the present authors also incor-
porated a thermodynamic energy density derived from a Lan-
dau expansion in the order parameter �. However, here we
examine a smectic sample at a fixed temperature far enough
away from the SmA-SmC phase transition to assume that the
cone angle is constant throughout the sample. The thermo-
tropic energy may therefore be omitted.

We will use the standard Frank-Oseen nematic elastic en-
ergy density �24� within a smectic layer for the director n
defined in Eq. �1�, subject to a one elastic constant approxi-
mation,

Welas =
K�

2
sin2 ��d�

dz
�2

, �13�

where K� is an elastic constant. The total energy of the sys-
tem �per unit area in the xy plane� is therefore

E = 2�	
0

d

Welas dz + Wsurf�0��
= 	

0

d

K� sin2 ��d�

dz
�2

dz + ��a sin2 �a�0� + �z sin2 �z�0�

− �az sin2 �a�0�sin2 �z�0�� , �14�

where �z�0� and �a�0� are the expressions defined by Eqs.
�10� and �11� evaluated at z=0, in other words, when �
=��0�. �The factor of 2 in Eq. �14� indicates that the energy
is twice the energy of one-half of the chevron structure, be-
tween z=0 and z=d.�

The director configuration will be determined by minimi-
zation of the total energy, E. Using the standard Euler-La-
grange minimization, we obtain the bulk governing equation

d2�

dz2 = 0, �15�

and the boundary condition at z=0,

2K� sin2 �
d�

dz
=

d

d��0�
��a sin2 �a�0� + �z sin2 �z�0�

− �az sin2 �a�0� sin2 �z�0�� . �16�

From geometrical considerations and the assumed symmetry
of the chevron structure, the director is constrained to lie in
the xy plane in the center of the cell, i.e., n3=0 at z=d. Using
Eq. �1�, the azimuthal angle in the center of the cell must,
therefore, satisfy

��d� = cos−1� tan �

tan �
� . �17�

The minimum �and maximum� energy solutions can be found
by solving Eq. �15� subject to the boundary conditions in Eq.
�16� at z=0 and Eq. �17� at z=d.

The solution of Eq. �15� is a linear variation of the azi-
muthal angle,

��z� = ���d� − ��0��
z

d
+ ��0� , �18�

where ��d� is given by Eq. �17� and, using Eqs. �16� and
�18�, ��0� is a solution of
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FIG. 3. Illustration of the intersection of the
smectic cone in the C1 and C2 layers with the
substrate. In �a� the variation of the director azi-
muthal angle ��z� through the cell is shown. The
azimuthal angle varies from the substrate value
��0� to the chevron interface value ��d�, which
takes the value for which the director lies in the
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and C2 director profiles is demonstrated in a
single diagram.
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2K� sin2 �
���d� − ��0��

d

=
d

d��0�
��a sin2 �a�0� + �z sin2 �z�0�

− �az sin2 �a�0�sin2 �z�0�� , �19�

where �z�0� and �a�0� are the functions given in Eqs. �10�
and �11� evaluated at z=0, i.e., functions of ��0�. This non-
linear equation may have more than one solution and as a
result there may be more than one director configuration pos-
sible for a fixed set of parameter values. Consideration of the
energy E for each configuration will determine the global
energy minimizer. Using Eq. �18�, we can simplify the en-
ergy in Eq. �14� to

E =
K� sin2 �

d
���d� − ��0��2 + �a sin2 �a�0� + �z sin2 �z�0�

− �az sin2 �a�0�sin2 �z�0� . �20�

The stability of solutions of Eq. �19� can be determined from
the second derivative of the free energy, d2E /d��0�2.

We will consider the solutions of Eq. �19� for both C1 and
C2 chevron configurations. As mentioned previously, these
two chevron structures differ in the sign of the layer tilt �,
with a C1 chevron corresponding to a layer tilt �=��,
whereas �=−�� for a C2 chevron �we always take ��0�.
This difference in the value of � affects the director angle �
at the chevron interface through Eq. �17�, as well as the
values of �, �a, and �z through Eqs. �4�, �10�, and �11�.
Consequently, for a fixed parameter set, the C1 and C2 chev-
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ron configurations will exhibit different energies. It is by
considering these energies that we will be able to determine
the global energy minimizer of the system.

Once ��0� and ��d� are known, the azimuthal angle ��z�
across the bottom half of the cell in Eq. �18� can be repre-
sented using the plots presented in Fig. 4. These depict the

cone angle θcone angle θ cone angle θ

en
er

gy
p
er

u
n
it

ar
ea

d
ir
ec

to
r

an
gl

e
φ
(0

)

(a) τz = 3 × 10−4 (b) τz = 1 × 10−4 (c) τz = 0.6 × 10−4

0◦0◦0◦

45◦45◦45◦

90◦90◦90◦

135◦135◦135◦

180◦180◦180◦

0◦0◦ 0◦ 5◦5◦ 5◦ 10◦10◦ 10◦ 15◦15◦ 15◦20◦ 20◦

C1π C1π
C1π

C1π
C1πC1π

C10
C10

C10

C10

C10C10

C2π C2π C2π

C2π C2πC2π

C1u

C1u

0

0.05

0.1

0.15

0.2

0.25

0

0.1

0.2

0.3

0.4

0.5

0.6

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

FIG. 6. The influence of variable zenithal anchoring strength on the surface director angle ��0� �upper graphs� and the total energy per
unit area �lower graphs�. In �a�–�c�, �0=5°, �a=10−4 N m−1, while �z is as indicated �in N m−1� and �az= ��a+�z� /2. The transition and
extrema indicators are equivalent to those in Fig. 5. �The energies per unit area are in units 10−5 J m−2.�

cone angle θcone angle θ

pretilt angle α0pretilt angle α0

ze
n
it

h
al

an
ch

or
in

g
st

re
n
gt

h
τ z

ze
n
it

h
al

an
ch

or
in

g
st

re
n
gt

h
τ z

az
im

u
th

al
an

ch
or

in
g

st
re

n
gt

h
τ a

az
im

u
th

al
an

ch
or

in
g

st
re

n
gt

h
τ a

(a) (b)

(c) (d)

0◦0◦

0◦0◦

5◦5◦

5◦5◦

10◦10◦

10◦10◦

15◦15◦

15◦15◦ 20◦20◦ 25◦25◦

C1π

C1π

C1π

C1π

C10

C10

C10

C10

C2π

C2π

C2π

C2π

10−1

10−1

10−2

10−2

10−3

10−3

10−3

10−3

10−4

10−4

10−4

10−4

10−5

10−5

10−5

10−5

10−6

10−6

FIG. 7. Phase diagrams indicating the chevron of lowest energy as the angles or the anchoring strengths are allowed to vary. In each plot
�az= ��a+�z� /2 and anchoring strengths are in units N m−1. �a� �=10°, �a=10−4 N m−1; �b� �0=5°, �a=10−4 N m−1; �c� �=10°, �z

=10−4 N m−1; �d� �0=5°, �z=10−4 N m−1.

DIAZ, MCKAY, AND MOTTRAM PHYSICAL REVIEW E 76, 041705 �2007�

041705-6



smectic cone �described in Fig. 3� as viewed along the x axis.
In this plot we represent this linear variation of � through the
cell, from ��0� to ��d�, using the diagrams shown in Fig. 3,
and using thick solid, dashed, or dotted lines. These three
different lines will denote the three possible solutions we
have found: two for the C1 case and one for the C2 case.
One end of these paths around the cone must be at the inter-
section of the C1 and C2 cones �i.e., in the xy plane� since
this is the value of � prescribed at z=d. The other ends of the
paths follow either the C1 or C2 cone and end at the value
��0� determined by the solutions of Eq. �19� with ��0 for
C1 and �	0 for C2 chevrons. The two different solutions
for the C1 case will be denoted by C10, for ��0� close to 0,
and C1�, for ��0� close to � radians. For the C2 case we
only find a solution with ��0� close to � and denote this
solution by C2�.

When both the C10 and C1� chevrons coexist for a given
pretilt and cone angle there is a third unstable configuration
with ��0� close to � /2. Since this is an unstable solution we
do not need to consider it when comparing energy values of
solutions, although in the following figures we denote this
third configuration by C1u.

In Figs. 4–8 we have chosen the parameter values K�

=1
10−11 N, d=2
10−6 m, and �=0.85. In addition, in
Fig. 4 we have set �a=�z=�az=1
10−4 N m−1. When vary-
ing the azimuthal and zenithal anchoring strengths we will
fix the interaction strength �az= ��a+�z� /2. Figures 4�a�–4�e�
illustrate the C1 and C2 director profiles for a fixed cone
angle �=10° and variable pretilt �0, whereas in Figs.
4�f�–4�j� the cone angle is allowed to vary and the pretilt
�0=5° is constant. We find that C2� structures exist with
��0� relatively close to ��d� for each pretilt �Fig. 4�. We also
observe that C10 chevrons occur when the pretilt angle is
small, and C1� chevrons when the pretilt is large relative to
�. A similar behavior is seen in Figs. 4�f�–4�j� with C1�

chevrons prevalent when the cone angle is small. In Figs.
4�c�, 4�h�, and 4�i�, stable C10 and C1� states both exist at
intermediate values of the pretilt or cone angle.

In order to demonstrate the existence of the various chev-
ron configurations, in Fig. 5 we examine the influence of
variable zenithal anchoring strengths on the surface director
twist angle ��0� and the total energy per unit area E defined
in Eq. �20�. In each case, the pretilt angle �0 is allowed to
vary from 0° to 20°, while the cone angle is fixed at �
=10°. In Fig. 5�a�, when the zenithal anchoring strength is
relatively strong, there is a smooth, monotonic transition
from a C10 to a C1� dominated regime as the pretilt angle
increases. In this case, at small pretilts C2� chevrons exhibit
the lowest energy, while C1� configurations are the energy
minimizers at large pretilts. The C10 chevrons are lowest in
energy for a very small range of pretilts close to �0=7°. The
transition from a C10 to a C1� chevron becomes steeper as
the zenithal anchoring strength is decreased until eventually
the transition is hysteretic and the two stable C1 chevrons
coexist for a range of pretilt angles. Figure 5�c� illustrates
this coexistence of chevrons at intermediate pretilt angles
when the zenithal anchoring strength is relatively weak. For
example, when �0=10° it is possible to obtain four distinct
values for the twist angle on the surface, ��0�, corresponding

to C10, C1u, C1�, and C2� chevrons. Despite this, the energy
minimizer behavior is very similar to Fig. 5�a� with C2� then
C1� states dominating as �0 increases, although the small
C10 minimizing region is now absent.

Figure 6 presents an analysis similar to Fig. 5 as the cone
angle � increases, with fixed �0=5°. Once again, a weaken-
ing of the zenithal anchoring strength, relative to the azi-
muthal value, leads to a hysteresis and the introduction of
unstable C1u chevrons. For small cone angles C1� chevrons
are the energy minimizers, with a transition to C2� chevrons
as � increases. However, in Fig. 6�a� we note that C10 chev-
rons can dominate for a narrow range of cone angles, pro-
vided the zenithal anchoring is relatively strong.

Figures 5 and 6 demonstrate that the chevron configura-
tions which minimize the total energy of the system depend
upon the anchoring parameters chosen. With this in mind, in
Fig. 7 we present phase diagrams that indicate the preferred
chevron structures �i.e., the energy minimizer� for a range of
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parameter values. These plots expand upon the results of Fig.
6 and demarcate the different chevron regimes. In Figs. 7�a�
and 7�b� we see that, as the pretilt angle �0 increases, there is
a transition from C2� to C1� chevrons, which may be inter-
spersed by an intermediate phase of C10 chevron structures
when �z is large or �a is small. From Figs. 7�c� and 7�d� we
see that C1� chevrons dominate when the cone angle � is
small. The two stage transition from C1� to C2� via C10 was
illustrated in Fig. 6�a� and can be achieved by increasing the
zenithal anchoring strength. Since a decrease in temperature
from the SmA–SmC transition will be associated with an
increase in cone angle �, a horizontal line of constant anchor-
ing strength in Fig. 7�c� or Fig. 7�d� can be interpreted as
indicating the behavior as a sample is cooled. For small cone
angles �high temperature� a C1 chevron is preferred, and as
the cone angle increases �temperature decreasing� a C2 chev-
ron is preferred.

Recall that the motivation for examining independent azi-
muthal and zenithal anchoring strengths was the apparent
contradiction between the results of Wang et al. �17� and
Diaz et al. �15,16�. The former finds that C2 chevrons are
favored at large anchoring strengths, while the latter predict a
transition from C2 to C1 chevrons as the anchoring strength
increases. This apparent contradiction appears to be a conse-
quence of the surface anchoring energies adopted in these
articles. Diaz et al. �15,16� adopt the surface energy �2� that
essentially incorporates equal zenithal and azimuthal contri-
butions via a single anchoring strength, �z=�a=�az. In con-
trast, the definition of surface anchoring employed in Wang
et al. �17� is analogous to a purely azimuthal energy �i.e.,
�z�0, �az�0�.

By concentrating on very small �z in Fig. 8, we are able to
reproduce the behavior of Wang et al. �17�. Regardless of the
pretilt and cone angles chosen, if �z is small then C2� chev-
rons will always dominate when the azimuthal anchoring is

strong. Figure 8 is also in good agreement with Diaz et al.
�15�. For the parameters considered, the point �a=�z
=10−5 N m−1 �corresponding to a weak unified anchoring�
almost always lies within the C2� chevron region. As the
anchoring strengths increase while maintaining �a=�z=�az, it
is possible for the system to pass into a C1� regime.

V. SUMMARY

We have examined the transition between C1 and C2
chevron profiles in a smectic-C liquid crystal cell. It is clear
from the results presented here that by decoupling the azi-
muthal and zenithal surface energies, it is possible to ensure
the existence of specific chevron structures. Strong azimuthal
anchoring leads to C2 chevrons, while C1 chevrons are char-
acteristic of relatively strong zenithal anchoring. Therefore,
it is very important that any model of a smectic cell, espe-
cially a SSFLC device, should take into account the substrate
treatment and the nature of the anchoring it induces. It is also
possible, using the results we have presented, to deduce the
behavior of a confined smectic material as the temperature is
reduced from the SmA-SmC transition. If we fix all param-
eters and consider an increase in � from zero we are, in
effect, considering a reduction in temperature. For instance,
if we consider the horizontal lines corresponding to param-
eter values �a=�z=1
10−4 N m−1 in Figs. 7�c� and 7�d�, we
see that as � increases, the global minimum chevron state
changes from C1� to C2� �while the minimum C1 state is
C10�. Investigation of Fig. 6 shows that, even though the
C2� chevron has the lowest energy, the C10 state remains
metastable. There may, therefore, be problems of degeneracy
in the system and both chevron states may occur within the
same sample, causing zigzag defects. Use of such phase dia-
grams to tailor the anchoring strengths will therefore be a
useful guide to developing defect-free samples.
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